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1

Let X be a normed linear space and consider an n-dimensional subspace
Un C X. Assume that Un is a unicity subspace of X, that is, each f E X
possesses a unique best approximant q E Un for which Ilf - qll =
inf{llf - pll: p E Un}' In this case we can consider the best approximation
operator 9: X ~ Un mapping each f E X into its best approximant in Un'
This operator being bounded and continuous, is at the same time in general
nonlinear. (The linearity of 9 is essentially characteristic only for Hilbert
spaces, see [8, p. 249].) This leads to the natural desire to approximate 9 in
a neighborhood of f E X by a linear operator or, in other words, to the
question of differentiability of the best approximation operator.

The operator 9 has at f E X a one-sided derivative, denoted by Df 9:
X ~ Un' if, for each g E X, the limit

lim 9(f + tg) - 9(1) = D
f
9(g)

/ ... +0 t

exists. In case Df9(g) = -Df9(- g), g E X, we say that 9 is differentiable
atf. If, in addition, the derivative Df 9 is a linear operator of direction g,
then 9 is called Gatoux differentiable at f E X.

When X = L p , 2 < P < 00, the differentiability of the operator 9 was
studied by Kripke and Holmes [4]. It was shown in [4] that in L p ,

2 < P < 00, the operator 9 is differentiable at each f E L p but is not, in
general, Gatoux differentiable. In [5] the differentiability of 9 was
investigated for the case X = C(a, b]. We proved in [5] that the operator of
best Chebyshev approximation has a one-sided derivative at eachf E C(a, b]
and characterized those functions in e[a, b] at which 9 is Gatoux differen-

266
0021-9045/84 $3.00
Copyright © 1984 by Academic Press. Inc.
All rights of reproduction in any form reserved.



DIFFERENTIABILITY OF BEST LI-APPROXIMATION 267

(1)

tiable. In the present paper we shall study the differentiability of the operator
of best L capproximation. The Gatoux differentiability of g will be verified
for the important class of the so-called generalized convex functions. We also
give some applications for polynomials and spline functions.

2

It is well known that the space L I does not possess unicity subspaces.
Therefore the L capproximation problem will be studied in the space X = CI
consisting of all real-valued continuous functions on [-1, 1] and endowed
with the LI-norm on [-1,1]. We consider an n-dimensional unicity subspace
Un in CI with basis {u d 7= I and denote by g: CI -+ Un the operator of best
L I-approximation. Since all known unicity subspaces of C I (Haar subspaces,
different families of spline functions) satisfy the weak Chebyshev property it
is natural to assume that Un is also a weak Chebyshev space (for the
definition see, e.g., [9 D. In what follows the unicity subspaces of C I which
are also weak Chebyshev spaces will be called UW-spaces. We shall also
impose on the subspace Un some nondegeneracy conditions. As usual a point
~E [-1,1] is called essential relative to Un if not all elements of Un vanish
at~. We shall say that Un' n ~ 2, is nondegenerate provided (a) all points in
[-1, 1] are essential relative to Un; (b) for each ~ E (-1, 1) we can find
g E Un such that g(~) = 0 and

lim inf I !(x) I > o.
x-.c .. -x

(In case the elements of Un are differentiable (1) is equivalent to g'(~)*0.)
Assume now that Un is a UW-space. Then by a result of Sommer [10]

(see also Micchelli [7D there exists a unique set r l' r2'"'' rn of canonical
points: -1 = ro < r l < ... < rn < rn + I = 1 such that

±(-I)if+
1

q(X)dx=O,
;=0 Ti

Moreover, if u l , ... , un is a basis in Un then

(2)

that is, we may interpolate at the nodes r = {rd7= I' Let us denote by ~:

C I -+ Un the corresponding interpolation operator, i.e., ~(f, ri) = !(ri),
1 <i <n,!Eel' For a weak Chebyshev space Un with basis {U i } 7= I denote
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by K(Un ) its convexity cone or the cone of generalized convex functions
consisting of those continuous functions f for which the determinant

preserves its sign (is nonnegative or nonpositive) for any -1 <Xl < ... <
xn+ 1 < 1. The Lcapproximation problem for generalized convex functions
was studied by Micchelli [7]. In particular it was shown in [7] that 5'(f) =

!£..(f) providedf E K(Un )·

In what follows Lip 1 denotes the set of point-wise Lipschitz continuous
functions on (-1,1), i.e., Lip 1 = {f: for each x E (-1,1) we can find a
constant M x such that If(x) - f(y)l:::;;; M x Ix - yl for any y E (-1, I)}.

Our main result is the following

THEOREM 1. Let Un' n;;;:: 2, be a nondegenerate UW-space such that
Un cLip 1, and consider an arbitrary f E K(Un)n Lip 1. Iff is not iden
tically equal to !£..(f) on some nondegenerate interval, then the operator 5'
of best L capproximation is Gatoux differentiable at f and Df5' = !£...

3

The proof of Theorem 1 will be based on several lemmas. We shall need
the following result on zeros of elements of weak Chebyshev spaces (see
[9, p. 42]).

LEMMA 1. Let Un be an n-dimensional weak Chebyshev space and
assume that all points of [-1, 1] are essential relative to Un' Then each g E
Un \ {O} has at most n separated zeros. Moreover if either g(1) 1=- 0 or
g(-1) 1=- 0 then the number of separated zeros of g does not exceed n - 1.

The next lemma will play a crucial part in proof of Theorem 1. It shows
that under the hypothesis of Theorem 1 the operator 5' satisfies some kind of
Lipl property. In what follows Ilglloo=sUPXE[-I,l)lg(x)1 and Ilglll=
f~11 g(x)1 dx denote the supremum and LI-norm of g, respectively.

LEMMA 2. Let Un' n;;;:: 2, be a nondegenerate UW-space, Un cLip 1 and
consider an arbitrary f E K(Un) n Lip 1 such that f - !£..(f) is not iden
tically zero on some nondegenerate interval. Then for any bounded
measurable function g and any best LI-approximant i to gfrom Un we have

115'(f) - illco:::;;; M(f) Ilf - gllco'

where the constant M(f) > 0 depends only on f and Un'
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Prool 01 Lemma 2. Since I E K(Un) it follows that ..?(f) = ~(f). We
may assume that ~(f) == 0, i.e.,

d (UP"" Un,/)
f(x) = et ! I , , ! n , X ,

det (U I, ,Un)
!I , , !n

where as above {u;}7=1 and {!d7=1 are the basis and canonical set of Un'
respectively. Hence

(3)

where Iy I = 1 and °~ i ~ n. Furthermore, -by our assumption I does not
vanish on a nondegenerate interval, i.e., all its zeros are separated. On the
other hand I belongs to the (n + 1)-dimensional weak Chebyshev space
spanned by up..., un and/. Thus applying Lemma 1 we may conclude thatf
vanishes only at !I' 1 ~ i ~ n. Moreover we state that for any 1~ i ~ n,

(4)

Assume the contrary, that is, for some 1 ~ j ~ nand x k ~!j we have

(5)

We may assume without loss of generality that Xk~ +!j' Nondegeneracy of
Un implies that there exists p E Un' Ilplloo = 1 such that p(!j) = 0, and
y(-l)jp(x) ~ I1(X - !j) for some 11 >°and any !j ~ X ~!j + h, h >°(see
(1)). Now let e be a positive number such that

and

e< min max I/(x)1
O"I,n xe[Tj,T/+d

e <min{I/(-l)I, 1/(1)1},

(6)

(7)

and consider the function II = I - ep. It follows from (3) and (6) that for
some c;l E (!I' !I+I)'
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Therefore y(-l)/II(~I»e-ey(-l)ip(~/);;;>-O, i.e., II has at (~o'~j_')U

(~j' ~n)' n - 1 separated zeros. Furthermorellrj) = 0 and by (3) and (5)

y(-l/I,(xk) = I/(xk)l- ey(-l)j p(xk)

~ (x
k

- T
j

) \ I/(xk )! - e1l 1 <0I(xk - Tj ) \

for k large enough. Since y(-I/I,(c,j) > 0 and Tj <xk < c,j for k sufficiently
large we may conclude that (C,j-l' c,j) contains 2 additional separated zeros
ofII' Hence II has at least n + 1 separated zeros. Furthermore since II is an
element of an (n + I)-dimensional weak Chebyshev space it follows from
Lemma 1 that/l(I)=/l(-l)=O. But this evidently contradicts (7). By this
contradiction we obtain that (4) holds for each 1~ i ~ n.

Consider the set

A(t) = {x E [-1, 1J: I/(x)1 ~ t}, 0< t < 11/1100' (8)

Since I vanishes only at T/, 1~ i ~ n, and by (4) it tends to zero as x~ Ti at
most, linearly it follows that

(9)

where )1( ... ) denotes the Lebesgue measure. (Here and in the remaining part
of proof of Theorem 1 we denote by cl' c2 , ... , positive constants depending
only on/and Un')

Now let g be a bounded measurable function, i E Un any of its best L 1

approximants in Un' Set III - glloo = e, e;;;>- O. We may assume without loss
of generality that e < 11/1100 since otherwise

II illl ~ IIIIII +III - gill + II g - illl

~ 11/111 +III - gill + II gill ~ 211/111 + 2111 - gill

~ 411/1100 +4111 - glloo ~ 8111 - glloo'

and the statement of Lemma 2 follows by equivalence of norms in finite
dimensional spaces. For e < 11/1100 we consider the function

I.(x) = I(x),

= g(x),

x E A(e),

xE [-1, Il\A(e).
(10)

Using that III - glloo = e we obtain by (3) that

sign/.(x) = sign/(x) = y(_l)i,



DIFFERENTIABILITY OF BEST LI-APPROXIMATION 271

Hence (2) yields that

Il/e - gill -ll/elll = r(Ie - g){sign(fe - g) - signIe}
-I

(II)

where B(fe, g) = {x E [-I, I]: 0 < fix) < g(x) or g(x) < fix) <O}.
Let us prove that for any x E [-I, I] and I:::;; i :::;; n we have with a

suitable cz > 0,

(12)

If x E A(e) then fix) = f(x) and (12) follows by f(ri) = 0 and the Lip I
property of f at rio On the other hand,e:::;; If(x)1 :::;; c3 1x - ril when x E
[-I, 1]\A(e). Hence by (10),

Ifix)1 = Ig(x)l:::;; If(x)1 + e:::;; 2c3 1x - ril,

i.e., (12) holds for every x E [-1,1.].
Furthermore, since Un C Lip I, it easily follows that for any p E Un and

I :::;; i:::;; n,

Ip(x) - p(ri)l:::;; c4 11plloo Ix - rJ (13)

Moreover, using that {rd7=1 is an interpolation set for Un' we may conclude
that

(14 )

Applying (13) and (14) for gE Un we obtain that for some I:::;; j:::;; nand
any x E [-1/2c4 cs + rj , rj + 1/2c4 cs],

(15)

We may assume without loss of generality that Ie > 0 on (rj , rj+ I) and g> 0
on [-1/2c4 cs + rj , rj + 1/2c4 cs]. Set r/ = min{rj+)l rj + II glloo/4czcs}. Then
(12) implies that for x E (rj , rn,

(16)



272 ANDRAs KROO

Hence by (15), (rj , rn c B(fe' i). Thus it follows from (11), (15), and (16),

Ilfe- gill -Ilfeill ~rj
Ife- gl ~ (r/ - r j ) 11

4
gll00

Tj Cs

~c6min{llgII00,llgll~}. (17)

On the other hand, using that g is a best LI-approximant of g, we can obtain
the following upper estimate

Ilfe- gill -Ilfelll:::;; Ilfe- gill + II g - gill -Ilfeill

:::;; Ilfe- gill + Ilglll -Ilfelll:::;; 211fe- gill'

Hence (10) and (9) yield

life - gill -Ilfeill :::;; 2 life - gill = 2f If - gl:::;; 2e,u(A(e»:::;; 2c I eZ
•

A(e)

Combining this with (17) and taking into account that e < Ilflloo' we finally
obtain

The proof of the lemma is completed.

Remark 1. The main point in Lemma 2 is that we estimate the distance
between best L I-approximants of functions f and g while the deviation of g
from f is measured in supremum norm. This leads to a Lip 1 type property.
On the other hand, if the distance between g and f is measured in L I-norm,
then the operator g satisfies only the Lip! condition, the proof being
similar to [6, p. 341].

For functions f E K(Un) we have the nice relation g(f) = S/'..(f). Our
following lemma shows that this relation almost holds for nearby functions.
By w(g, h) = max{1 g(x l ) - g(xz)l: Xp X z E [-1, 1], IX I - xzl:::;; h} we denote
the modulus of continuity of a continuous function g.

LEMMA 3. Let Un' n ~ 2, be a nondegenerate UW-space, Un cLip 1 and
consider an arbitrary f E K(Un) n Lip 1 such that f - S/'..(f) is not iden
tically zero on a nondegenerate interval. Then for any continuous function g
with II glloo = 1 and 0 < t < to(f) we have

II g(f + tg) - S/'..(f + tg)ll<Xl :::;; MI(f) tw(g - S/'..(g), t),

where to(f) and MI(f) are positive constants independent of g.
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Proof of Lemma 3. Set f* = f - !/..(f), g* = g - !/..(g). Evidently
.3'(f*) == O. Hence by Lemma 2,

11.3'(f* + tg*)lloo ~ M(f)t II g* 1100' (18)

For et = (M(f) + 1) II g* 1100 t we consider the function

(19)
xEA(e t ),

xE [-1, 1]\A(e t ),

ft(x) = f*(x) + tg*(x),

=f*(x),

where A(h) = {x E [-1, 1]: If*(x)1 ~ h}.
Let us verify that for any xE [-1, 1],

sign(ft - .3'(f* + tg*)) = sign(f* + tg* - .3'(f* + tg*)). (20)

For xEA(e t ) this holds automatically. Furthermore, if xE [-1, 1]\A(e t ),

then ft = f* and by (18),

Itg* -.3'(f* + tg*)1 ~ et < If*l·

Hence (20) is true for any xE [-1, 1].
It is known (see [8, p. 46]) that since .3'(f* + tg *) is the best L 1

approximant of f* + tg* we have

I(I p sign(f* + tg* - .3'(f* + tg*)) I~ t Ipl,

where Z = {x E [-1, 1]: f*(x) + tg*(x) = .3'(f* + tg*, x)}, Z ~ A(e t ).

Hence by (20), for any p E Un'

11ft - .3'(f* + tg*)111

=r (ft - .3'(f* + tg*) sign(f* + tg* - .3'(f* + tg*))
-1

~ f Ift- pi
[ -1,ll\Z

+ 1(1 (p - .3'(f* + tg*)) sign(f* + tg* - .3'(f* + tg*)) I

~ f 1ft - pi +f Ip - .3'(f* + tg*)1 = 11ft - pll!'
[-I,II\Z Z

i.e., .3'(f* + tg*) is a best L capproximant of ft in Un' Then again applying
Lemma 2 for functions f and ft + !/..(f) we obtain by (19),

11.3'(f* + tg*)lloo ~ M(f) IIf* - ftlloo ~ M(f)t max Ig*(x)l. (21)
xEA(e,)
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Using once more relations (4) (with f = f *), we may conclude that for any
O<t<t1'

n

A(t) c U (-bt +r i , r i +bt),
i=1

(22)

where t I and b >°depend only on f. Furthermore, since ~ is a bounded
linear operator

(23)

the upper bound being independent of g. Hence by (22), for any °< t < to =
tl/R(M(f) + 1),

n

A(et) c U (-bet +r i , r i + bet)·
i=1

Moreover g*(r;) = 0, 1~ i ~ n. Thus (24) and (23) imply that

max Ig*(x)1 ~ w(g*, bet)
xeA(E,)

~ «M(f) + 1) Rb + 1) w(g - ~(g), t).

(24)

Substituting this into (21) we obtain the estimation of Lemma 3.
Evidently Theorem 1 is a straightforward consequence of Lemma 3. In

case n = 1 we can prove a slightly more general result than Theorem 1. We
set UI = {c~: c E IR}, where ~ is a positive continuous function, ~(x) ~ ~o >0,
xE [-1, 1]. Then K(U I ) contains those continuous functionsffor whichfN
is monotone. By the Jackson-Krein theorem (see [8, p. 236]) U I is a unicity
subspace of CI' The canonical set of U I consists of one point -1 < r I < 1
such that

fTI fl
~ - ~ =0.

-1 TI

(25)

THEOREM 2. Let UI = {c~: c E IR}, where ~ is continuous and positive
and consider a continuous function f such that fN is monotone and f is not
identically equal to ~(f) on some nondegenerate interval. Then operator 5'
of best Lcapproximation is Gatoux differentiable atf and Dr5' =~.

Proof of Theorem 2. Consider an arbitrary continuous function g with
II glloo = 1. Without loss of generality we may assume thatf(r l ) = g(r l ) = 0,
i.e., ~(f) = ~(g) == 0. Then in order to prove the theorem we have to show
that 5'(f + tg)/t ~°as t ~ 0. Since fN is monotone and f does not vanish
on a nondegenerate interval it follows that r I is the only zero of fN and

* -l ·1 f(x) I ItilA (t)- xE [-1,1]. ~(x) ~ ~o \ = [rl-hl(t),r l +h 2(t)],
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where h(t)=max{h l (t),h 2(t)}--++0 as t--+O. Set 3'(f+tg)=ct¢, l1(t)=
w(g, h(t». We claim that for any t,

(26)

which immediately implies that 3'(f + tg)jt --+ °(t --+ 0). Assume that (26) is
not true, i.e.,

(IYI = 1). (27)

(28)

Of course we may assume that yf <°on (r l , 1] (since T( is the only zero off
andf changes its sign at T I). Let us verify that

y(f + tg - ct¢)< °
on [T!, 1]. If y(f(x) + tg(x» ~ °then by (27),

y(f(x) + tg(x) - ct¢(x» ~ -yct¢(x) < -It Il1(t) ~ 0.

On the other hand, if xE [TI, 1] and y(f(x)+tg(x»>O then O~Yf(x»

-ytg(x) ~ -Itl, i.e., x E A *(t). Hence using that g(T() =°we obtain by (27),

y(f(x) + tg(x) - ct¢(x» ~ tyg(x) - yct¢(x)

< -It Il1(t) +Itl w(g, h(t» = 0.

Thus (28) holds on [T I' 1]. This means that it holds also on [T I - c5, 11 and
with ct = ct - ye for some e, c5 > 0. Hence by (25),

Ilf+tg-ct¢III-llf+tg-ct¢lll ~e f'-b ¢-er ¢
-I Tl-b

f
Tl

= -2e ¢ <°
TI-8

which is an evident contradiction since Ct¢ is the best L I-approximation to
f + tg from UI • The theorem is proved.

Remark 2. Let us show that if we drop in the above theorem the
condition thatfis not identically equal to ~(f) on a nondegenerate interval
then differentiability may fail. Consider the case when UI is the space of
constants and set

f(x) =x,

=0,

x E [0, 1],

xE [-1,0], g(x)=f(-x).



276 ANDRAs KROO

Then obviously f E K(UI). Furthermore !?(f) = 0, !?(f + tg) = tj(t + 1) if
t > 0 and !?(f + tg) = 0 if t < O. Thus the right and left derivative of!? atf
in direction g is equal to 1 and 0, respectively. Hence !? is not differentiable
at f. The same remark holds in connection with Theorem 1.

Remark 3. A higher type of differentiability which can be imposed on
operator!? is the Frechet derivative. It was shown in [3] that the operator of
best Chebyshev approximation is not Frechet differentiable. It can be also
shown that under the hypothesis of Theorem 1 (or Theorem 2) the operator
!? of best LI-approximation is not Frechet differentiable.

4

Let us consider some applications of the theorems proved above. Assume
that Un is an n-dimensional ECT-space (see [9, p. 364], for the definition).
By the Jackson-Krein theorem Un is a unicity subspace of eland hence it is
evidently a UW-space. If n ~ 2, then by the definition of ECT-spaces Un
satisfies the smoothness and nondegeneracy conditions imposed in
Theorem 1. Moreover it is known (see [2, p. 380]) that K(Un ) c Lip 1 if
n ~ 2. On the other hand, a one-dimensional ECT-space is simply a linear
span of a positive continuous function. Thus using Theorems 1 and 2 we
obtain

COROLLARY 1. Let Un' n ~ 1, be an ECT-space. Then for any
f E K(Un ) such that f - Sf.(f) is not identically zero on a nondegenerate
interval the operator!? of best L I-approximation is Gatoux differentiable at
f and Df !? = Sf..

A standard example of an ECT-space is the set Pn of algebraic
polynomials of degree at most n - 1. In the polynomial case the canonical
points are the zeros of the Chebyshev polynomial of degree n of second kind.
The cone K(Pn) of generalized convex functions contains continuous
functions f whose nth order divided difference

(
n+ I )

w(x) = D(x -Xi)

does not change sign while -1 <x I < ... < xn+ I < 1. If in particularf E en,
pn) does not change sign at (-1, 1) and is not identically zero at some
nondegenerate interval then Corollary 1 implies that !? is Gatoux differen
tiable atf.

We turn now to application for spline functions. Let Un = Sm,r be the
space of splines of degree m- 1 with r fixed knots -1 <XI < ... <xr < 1,
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dim Sm.r = m +r = n (m ~ 2, r ~ 1). It is well known that Sm.r is a weak
Chebyshev space [9]. Moreover, by a result of Galkin [1] and Strauss [11]
Sm.r is also a unicity subspace of C I . Hence Sm.r is a UW-space. Evidently,
S m.r fulfils the smoothness and nondegeneracy conditions of Theorem 1. The
canonical set of Sm.r is given by zeros of a certain perfect spline, see [7].

COROLLARY 2. Let Un = Sm.r (m ~ 2, r ~ 1). Then for any f E
K(Sm.r) n Lip 1 such that f - ~(f) is not identically zero on a
nondegenerate interval, the operator Y' of best L capproximation is Gatoux
differentiable at f and DfY' = ~.

Corollary 2 holds in particular for functions f E Cm such that f(m)
changes its sign only at XI'"'' xr and does not vanish on a nondegenerate
interval (see [7, p. 8D.
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