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Let X be a normed linear space and consider an n-dimensional subspace
U,cX. Assume that U, is a unicity subspace of X, that is, each fE X
possesses a unique best approximant g€ U, for which [|f—gq| =
inf{||f — pll: p € U,}. In this case we can consider the best approximation
operator 7: X —» U, mapping each f € X into its best approximant in U,,.
This operator being bounded and continuous, is at the same time in general
nonlinear. (The linearity of .7 is essentially characteristic only for Hilbert
spaces, see {8, p. 249].) This leads to the natural desire to approximate .7 in
a neighborhood of f€ X by a linear operator or, in other words, to the
question of differentiability of the best approximation operator.

The operator % has at f € X a one-sided derivative, denoted by D,7":
X - U,, if, for each g € X, the limit

i TS+ 18) = F)

t->+0 t

=D;7(g)

exists. In case D,.9(g) = —D;7(—g), g € X, we say that 7 is differentiable
at f. If, in addition, the derivative D,7 is a linear operator of direction g,
then .7 is called Gatoux differentiable at f € X.

When X=L,, 2< p< o, the differentiability of the operator . was
studied by Kripke and Holmes [4]. It was shown in [4] that in L,
2 < p < o, the operator ¥ is differentiable at each f € L, but is not, in
general, Gatoux differentiable. In [5] the differentiability of % was
investigated for the case X = C|a, b]. We proved in [5] that the operator of
best Chebyshev approximation has a one-sided derivative at each f € Cla, b}
and characterized those functions in C[a, b| at which .#* is Gatoux differen-
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tiable. In the present paper we shall study the differentiability of the operator
of best L -approximation. The Gatoux differentiability of .7 will be verified
for the important class of the so-called generalized convex functions. We also
give some applications for polynomials and spline functions.

2

It is well known that the space L, does not possess unicity subspaces.
Therefore the L,-approximation problem will be studied in the space X = C,
consisting of all real-valued continuous functions on [—1, 1] and endowed
with the L,-norm on [—1, 1]. We consider an n-dimensional unicity subspace
U, in C, with basis {u;}7_, and denote by .#": C, - U, the operator of best
L -approximation. Since all known unicity subspaces of C, (Haar subspaces,
different families of spline functions) satisfy the weak Chebyshev property it
is natural to assume that U, is also a weak Chebyshev space (for the
definition see, e.g., [9]). In what follows the unicity subspaces of C, which
are also weak Chebyshev spaces will be called UW-spaces. We shall also
impose on the subspace U, some nondegeneracy conditions. As usual a point
¢£€ [—1, 1] is called essential relative to U, if not all elements of U, vanish
at £ We shall say that U,, n > 2, is nondegenerate provided (a) all points in
[—1, 1] are essential relative to U,; (b)for each £€ (—1,1) we can find
g € U, such that g(&) =0 and

lim inf
x=f

8(x)
Z—x— > 0. 1))

(In case the elements of U, are differentiable (1) is equivalent to g’(£) # 0.)

Assume now that U, is a UW-space. Then by a result of Sommer [10]
(see also Micchelli [7]) there exists a unique set 7,,7,,..,7, Of canonical
points: —1 =7, <7, < +++ <7, < T,,, = 1 such that

S M awde=0,  geuU, @)
i=0 T

Moreover, if u,,..., 4, is a basis in U, then

Uygeoes U
da(‘ ")#Q
Ty yeees Tp

that is, we may interpolate at the nodes 7= {r,};_,. Let us denote by ¥:
C,- U, the corresponding interpolation operator, ie., Z(f, ;)= f(1;),
1 i< n,fE€C,. For a weak Chebyshev space U, with basis {;}{_, denote
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by K(U,) its convexity cone or the cone of generalized convex functions
consisting of those continuous functions f for which the determinant

det < Uy goes Uy )
X grens Xy Xy 1

preserves its sign (is nonnegative or nonpositive) for any —1 <x; < -+ <
X,,1 < 1. The L -approximation problem for generalized convex functions
was studied by Micchelli [7]. In particular it was shown in [7] that 2(f) =
Z.(f) provided f € K(U,).

In what follows Lip 1 denotes the set of point-wise Lipschitz continuous
functions on (—1,1), i.e.,, Lip I ={f:for each x& (—1,1) we can find a

constant M, such that | f(x) — f(»)| < M, |x — y| for any y € (-1, 1)}.
Our main result is the following

THEOREM 1. Let U,, n>>2, be a nondegenerate UW-space such that
U,cLip 1, and consider an arbitrary f € K(U,)NLip L. If f is not iden-
tically equal to Z,(f) on some nondegenerate interval, then the operator 7
of best L,-approximation is Gatoux differentiable at f and D,7 = ¥,.

3

The proof of Theorem 1 will be based on several lemmas. We shall need
the following result on zeros of elements of weak Chebyshev spaces (see
19, p- 42]).

LemmAa 1. Let U, be an n-dimensional weak Chebyshev space and
assume that all points of [—1, 1] are essential relative to U,. Then each g €
U0} has at most n separated zeros. Moreover if either g(1)# 0 or
g(—1) # 0 then the number of separated zeros of g does not exceed n — 1.

The next lemma will play a crucial part in proof of Theorem 1. It shows
that under the hypothesis of Theorem 1 the operator .7 satisfies some kind of
Lip 1 property. In what follows | g|l, =Sup,e;_;,1)/&(x) and | gl,=
J* 1] g(x)| dx denote the supremum and L ,-norm of g, respectively.

LemMma 2. Let U,, n>2, be a nondegenerate UW-space, U, — Lip | and
consider an arbitrary f € K(U,) N Lip 1 such that f— £(f) is not iden-
tically zero on some nondegenerate interval. Then for any bounded
measurable function g and any best L ,-approximant g to g from U, we have

1.2°(f) = &l <MUNNS — 8l
where the constant M(f) > O depends only on f and U,,.
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Proof of Lemma 2. Since f € K(U,) it follows that .7(f) = Z,(f). We
may assume that Z.(f)=0, ie.,

det (ul yoses u,,,f)

Ty ey Tys X
9
Uyyous U
det ( e ”)
Ty sores Ty

where as above {u;}7_, and {r;,}]_, are the basis and canonical set of U,,
respectively. Hence

fx)=

y(—l)if(x)>0’ x€ [ri’7i+1]’ (3)

where |y|=1 and 0 < i< n Furthermore,.by our assumption f/ does not
vanish on a nondegenerate interval, i.e., all its zeros are separated. On the
other hand f belongs to the (n + 1)-dimensional weak Chebyshev space
spanned by #,,..., 4,, and f. Thus applying Lemma 1 we may conclude that f
vanishes only at 7;, 1 i< n. Moreover we state that for any 1 <i<n,

ELREN 4)

X—1;

lim inf

X T

Assume the contrary, that is, for some 1 < j< 7 and x, - 7; we have

L e

xk—rrj |xk - le -

0. (5)

We may assume without loss of generality that x, — +7;. Nondegeneracy of
U, implies that there exists p€ U,, | pll,=1 such that p(r;)=0, and
P(—1) p(x) > n(x — ;) for some >0 and any 7, <x<7;+h, h>0 (see
(1)). Now let ¢ be a positive number such that

e< min  max |f(x) 6)

0gig<n xelri,ti44)
and

¢ <min{| f(=1)}, | /(D}, ™

and consider the function f; = f— ep. It follows from (3) and (6) that for
some &; € (7, ;41 )s

W=DifE)>e, 0<ign
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Therefore y(—1)'f1(¢) > e —ey(—=1)'p(&) >0, ie, f; has at (&, & )Y
(&j» ¢n), n — 1 separated zeros. Furthermore f1(r;) = 0 and by (3) and (5)

P=1Y file) = [ F ()l — ep(—1) plx)

A
(e —1))

for k large enough. Since y(—1)'f,(¢;) > 0 and t; < x, < & for k sufficiently
large we may conclude that (&;_,, ;) contains 2 additional separated zeros
of /1. Hence f| has at least n + 1 separated zeros. Furthermore since f, is an
element of an (n + 1)-dimensional weak Chebyshev space it follows from
Lemma 1 that f,(1) = fi(—1) = 0. But this evidently contradicts (7). By this
contradiction we obtain that (4) holds for each 1 i n.

Consider the set

A ={x € [-LI1:f()I<t 0<t<[|f - ®)

< —1))

ent<0

Since f vanishes only at 7;, 1 <i< n, and by (4) it tends to zero as x— 7; at
most, linearly it follows that

wA@) eyt ©)

where u(---) denotes the Lebesgue measure. (Here and in the remaining part
of proof of Theorem 1 we denote by c,, c,,..., positive constants depending
only on fand U,.)

Now let g be a bounded measurable function, § € U, any of its best L -
approximants in U,. Set ||/ — g|l., = ¢, € > 0. We may assume without loss
of generality that ¢ < || f||,, since otherwise

<Al + 1S — gl + 1 g — £l
<A+ = gl + gl <2071+ 217 = &l
<S4S Mloo + 411 — 8l <8BS — &llos

Il &1y

and the statement of Lemma 2 follows by equivalence of norms in finite-
dimensional spaces. For ¢ < | f]|,, we consider the function

Jx)=[f(x), x€A(e) (10)
=gx), x€I[-L1]\(e).
Using that || f — g||,, = & we obtain by (3) that

sign fi(x) = signf(x) =y(—=1)', xE€ (1,754, 0<Kign
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Hence (2) yields that
lm—ﬂwwmmﬁ;m—@m@m—@—mwu
=2 j (11)

B(fe, g)

where B(f,, §) = {x € [-1, 1]: 0 < fi{x) < &(x) or §(x) < f{x) <0}
Let us prove that for any x € [—1,1] and 1<<i<n we have with a
suitable ¢, > 0,

IS < ez lx =7l (12)

If x€ A(e) then f(x)= f(x) and (12) follows by f(zr;)=0 and the Lip 1
property of f at 7;. On the other hand, & <|f(x) <c;|x —17;| when x€
[—1, 1]\ (¢). Hence by (10),

/o)l =g <1/ + € < 2¢5 | x — 74,
i.e., (12) holds for every x € [—1, 1].
Furthermore, since U, < Lip 1, it easily follows that for any p € U, and
1<ign,

|p(x) — p(r)l < co[| Pl | X — 7 (13)

Moreover, using that {r;}]_, is an interpolation set for U,, we may conclude
that

1Pl <es max |p(z  PEU,. (14)

Applying (13) and (14) for g€ U, we obtain that for some 1< j<n and
any x € [—1/2c,¢5+7;, 7, + 1/2c4c5]

. 3 . . | £l .
| €0 > 1 8(x)l — | €(x) — &(z)) > - = —cy |8l |x — 1]
5
18l 18l 1€l
> — = . 15
e 2¢, 2¢, (13)

We may assume without loss of generality that f, > 0 on (z;,7;,,) and £ >0
on [—1/2¢c,c5+ 75, 7+ 1/2c,¢4]. Set tf =min{z;,,, 7; + || §l./4c,¢5}. Then
(12) implies that for x € (z;, t}%),

I €]l

0< /)<L

(16)
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Hence by (15), (1;, ) = B(f,, £)- Thus it follows from (11), (15), and (16),

€l
4c,

> cg min{l| £, || £l }- (17)

17~ =110 > [ 17 81> @ =)

On the other hand, using that ¢ is a best L,-approximant of g, we can obtain
the following upper estimate

Ife— &l = Il <Ife— gl + g = &l —11.fell
< ”fe_ g“] + Hg”l - ”fs”l < 2 er_ g”l‘

Hence (10) and (9) yield

Ife— &l =N/l <211/ — gl = 2L( ) S — g1 < 26u(A()) < 2,87

Combining this with (17) and taking into account that ¢ < | f}|,, we finally
obtain

18l Scre=0;]lf ~ gl

The proof of the lemma is completed.

Remark 1. The main point in Lemma 2 is that we estimate the distance
between best L -approximants of functions f and g while the deviation of g
from f is measured in supremum norm. This leads to a Lip 1 type property.
On the other hand, if the distance between g and f is measured in L,-norm,
then the operator .#° satisfies only the Lip 1 condition, the proof being
similar to [6, p. 341].

For functions f € K(U,) we have the nice relation Z(f)=<Z,(f). Our
following lemma shows that this relation almost holds for nearby functions.
By w(g, h) = max{|g(x,) — g(x2)}: X, x; € [—1, 1], [x, — x,| < h} we denote
the modulus of continuity of a continuous function g.

LEmMMA 3. Let U,, n > 2, be a nondegenerate UW-space, U, < Lip 1 and
consider an arbitrary f € K(U,) N Lip 1 such that f — £.(f) is not iden-
tically zero on a nondegenerate interval. Then for any continuous function g
with || gll, =1 and 0 <t < t,(f) we have

I2(f + t8) — LS + &)l < Mi(f) t(g — £ (8), 1),

where t(f) and M,(f) are positive constants independent of g.
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Proof of Lemma 3. Set f*=f—%/(f), g*=g— %(g). Evidently
2(f*)=0. Hence by Lemma 2,

[ Z(* + 18N <M 8% leo - (18)
For g,=(M(f)+ 1) || g*|l, ¢t we consider the function
fx)=f*x) +18%(x),  xEA(g)
= f*(x), x€ -1, 1]\M(e),

where A(h) = {x € [—1, 1]:|f*(x)| < h}.
Let us verify that for any x € [—1, 1],

sign(f, — F(f* +1g*)) =sign(f* + 1g* - 2(f* + g*)).  (20)

For x € A(g,) this holds automatically. Furthermore, if x € [—1, 1]\A(£,),v
then f,= /* and by (18),

ltg* — P(f* +1tg%) <& <|f*].

Hence (20) is true for any x € [—1, 1].
It is known (see [8,p.46]) that since Z(f* +tg*) is the best L, -
approximant of /* + tg* we have

[

(19)

psign(f*+tg*—?(f*+tg*))’ <f lpl,  PEU,,
1 z

where Z={x€ [—1,1]: f*(x)+1g*(x)=2(* +1g* x)}, Z<SA(e).
Hence by (20), for any pe U,

I1fe = 2 (f* + g%,

[ =0 * +gsien + gt — U+ 1g%)

+

f (p— F(f* +1g*)) sign(f* + 1g* — P(/* + 1g))
<J[—1 1]\zlft_p| +L|P_y(f* +g*) = /- pl:

ie., P(f* +1g*) is a best L,-approximant of f; in U,. Then again applying
Lemma 2 for functions f and f, + Z,(f) we obtain by (19),

|20 + 1g%) MU I * = fllo SMUY max (g% @1)
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Using once more relations (4) (with f = f*), we may conclude that for any
0<t<t,,

A(t) < O (—=bt + 7;, 1, + 1), (22)

where ¢, and b > 0 depend only on f. Furthermore, since &, is a bounded
linear operator

18w < 1T+IL(e (23)

the upper bound being independent of g. Hence by (22), for any 0 <7 < ¢, =
L/RM(f) + 1),

A(e,) < o (—be, + 1, 7; + be,). (24)

i=1
Moreover g*(r;) =0, 1 < i< n. Thus (24) and (23) imply that

max | g*(x)| < w(g*, be,)

xed(e)
(M) + D Rb+ 1) w(g — £ (8) 1)

Substituting this into (21) we obtain the estimation of Lemma 3.

Evidently Theorem 1 is a straightforward consequence of Lemma 3. In
case n =1 we can prove a slightly more general result than Theorem 1. We
set U, = {cg: c € R}, where ¢ is a positive continuous function, ¢(x) > ¢, > 0,
x € [—1, 1]. Then K(U,) contains those continuous functions f for which f/¢
is monotone. By the Jackson—Krein theorem (see [8, p. 236]) U, is a unicity
subspace of C,. The canonical set of U, consists of one point —1 <7, <1
such that

["e- J:l¢:0. (25)

THEOREM 2. Let U, = {cg:c € R}, where ¢ is continuous and positive
and consider a continuous function f such that f/¢ is monotone and f is not
identically equal to <,(f) on some nondegenerate interval. Then operator .7
of best L,-approximation is Gatoux differentiable at f and D5 = ¥, .

Proof of Theorem 2. Consider an arbitrary continuous function g with
llgllo = 1. Without loss of generality we may assume that f(z,) = g(r,) =0,
i.e., Z(f)=%(g)=0. Then in order to prove the theorem we have to show
that 2(f + tg)/t— 0 as t— 0. Since f/¢ is monotone and f does not vanish
on a nondegenerate interval it follows that 7, is the only zero of f/¢ and

S&x)
e

14

X (1) —
A*() = <%

x€[-1L1]

= [r, — A, (), T, + Ay (D)),
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where A(t) = max{h,(¢), h,(1)} > +0 as t->0. Set F(f+1g)=cd, n{t)=
w(g, h(t)). We claim that for any ¢,

e < '¢i' ") (26)

which immediately implies that .2°(f + tg)/t— O (¢ - 0). Assume that (26) is
not true, i.e.,

ye, >%n(t) (yl=1). @7)

Of course we may assume that yf < 0 on (r,, 1] (since z, is the only zero of f
and f changes its sign at 7,). Let us verify that

W +1g—c$)<0 (28)
on [z,, 1]. If p(f(x) + tg(x)) < O then by (27),
Y(f(x) +18(x) — ¢, 9(x)) < —ye, (x) < —[¢| n(#) <O
On the other hand, if x € [z,, 1] and y(f(x) + tg(x)} > O then 0 > y/(x) >
—ytg(x) > —|t], i.e., x € A*(¢). Hence using that g(r,) = 0 we obtain by (27),
Y(x) + 18(x) — ¢, 6(x)) < tyg(x) — ye, 6(x)
<t n() + {t] w(g, k(1)) = 0.

Thus (28) holds on |7, 1]. This means that it holds also on |7, — ¢, 1] and
with ¢, = ¢, — ye for some ¢,d > 0. Hence by (25),

If +ig— ol —Ir +ig—coli<e| s—c[

—1 T1—6

=—2£f] ¢ <0

;-8

which is an evident contradiction since c,¢ is the best L,-approximation to
S + tg from U,. The theorem is proved.

Remark 2. Let us show that if we drop in the above theorem the
condition that f is not identically equal to £,(f) on a nondegenerate interval
then differentiability may fail. Consider the case when U, is the space of
constants and set

Sx)=x, x€][0,1],
=0, x€[-1,0], gx)=f(—x)
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Then obviously f € K(U,). Furthermore #(f)=0, #(f+1tg)=t/(t+ 1) if
t>0and 2(f +1tg)=0if t <0. Thus the right and left derivative of .# at f
in direction g is equal to 1 and 0, respectively. Hence .7 is not differentiable
at f. The same remark holds in connection with Theorem 1.

Remark 3. A higher type of differentiability which can be imposed on
operator .7 is the Fréchet derivative. It was shown in [3] that the operator of
best Chebyshev approximation is not Fréchet differentiable. It can be also
shown that under the hypothesis of Theorem 1 (or Theorem 2) the operator
7 of best L,-approximation is not Fréchet differentiable.

4

Let us consider some applications of the theorems proved above. Assume
that U, is an n-dimensional ECT-space (see |9, p. 364], for the definition).
By the Jackson—Krein theorem U, is a unicity subspace of C, and hence it is
evidently a UW-space. If n> 2, then by the definition of ECT-spaces U,
satisfies the smoothness and nondegeneracy conditions imposed in
Theorem 1. Moreover it is known (see [2,p.380]) that K(U,)cLip 1 if
n > 2. On the other hand, a one-dimensional ECT-space is simply a linear
span of a positive continuous function. Thus using Theorems 1 and 2 we
obtain

CoroLLARY 1. Let U,, n>1, be an ECT-space. Then for any
S EK(U,) such that f — £(f) is not identically zero on a nondegenerate
interval the operator & of best L ,-approximation is Gatoux differentiable at
Sand D7 =<,.

A standard example of an ECT-space is the set P, of algebraic
polynomials of degree at most n — 1. In the polynomial case the canonical
points are the zeros of the Chebyshev polynomial of degree n of second kind.
The cone K(P,) of generalized convex functions contains continuous
functions f whose nth order divided difference

i) = 3 20w = ] @-x)

does not change sign while —1 <x; <--- <x,,, < 1. If in particular f € C",
™ does not change sign at (—1, 1) and is not identically zero at some
nondegenerate interval then Corollary 1 implies that .7° is Gatoux differen-
tiable at f.

We turn now to application for spline functions. Let U,=S,, , be the
space of splines of degree m — 1 with r fixed knots —1 < ¥, < --- < X, < 1,
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dimS, ,=m+r=n (m>2, r>1). It is well known that §,, , is a weak
Chebyshev space [9]. Moreover, by a result of Galkin [1] and Strauss [11]
S,..- is also a unicity subspace of C,. Hence S,, , is a UW-space. Evidently,
S .- fulfils the smoothness and nondegeneracy conditions of Theorem 1. The
canonical set of S, , is given by zeros of a certain perfect spline, see [7].

COoROLLARY 2. Let U,=S,, (m>2, r>1) Then for any fE€
K(S,,)NLipl such that f—%,(f) is not identically zero on a
nondegenerate interval, the operator 7 of best L -approximation is Gatoux
differentiable at f and D5 = &,.

Corollary 2 holds in particular for functions /€ C™ such that f™
changes its sign only at X,,.., X, and does not vanish on a nondegenerate
interval (see [7, p. 8]).
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