On Differentiability of the Operator of Best L₁-Approximation

András Kroó

Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, Budapest H-1364, Hungary

Communicated by John Todd and Oved Shisha

Received September 12, 1983

1

Let X be a normed linear space and consider an n-dimensional subspace $U_n \subset X$. Assume that U_n is a unicity subspace of X, that is, each $f \in X$ possesses a unique best approximant $q \in U_n$ for which $||f-q|| = \inf\{||f-p||: p \in U_n\}$. In this case we can consider the best approximation operator $\mathscr{P}: X \to U_n$ mapping each $f \in X$ into its best approximant in U_n . This operator being bounded and continuous, is at the same time in general nonlinear. (The linearity of \mathscr{P} is essentially characteristic only for Hilbert spaces, see [8, p. 249].) This leads to the natural desire to approximate \mathscr{P} in a neighborhood of $f \in X$ by a linear operator or, in other words, to the question of differentiability of the best approximation operator.

The operator \mathscr{P} has at $f \in X$ a one-sided derivative, denoted by $D_f \mathscr{P}$: $X \to U_n$, if, for each $g \in X$, the limit

$$\lim_{t \to +0} \frac{\mathscr{P}(f+tg) - \mathscr{P}(f)}{t} = D_f \mathscr{P}(g)$$

exists. In case $D_f \mathscr{P}(g) = -D_f \mathscr{P}(-g)$, $g \in X$, we say that \mathscr{P} is differentiable at f. If, in addition, the derivative $D_f \mathscr{P}$ is a linear operator of direction g, then \mathscr{P} is called *Gatoux differentiable* at $f \in X$.

When $X = L_p$, $2 , the differentiability of the operator <math>\mathscr{P}$ was studied by Kripke and Holmes [4]. It was shown in [4] that in L_p , $2 , the operator <math>\mathscr{P}$ is differentiable at each $f \in L_p$ but is not, in general, Gatoux differentiable. In [5] the differentiability of \mathscr{P} was investigated for the case X = C[a, b]. We proved in [5] that the operator of best Chebyshev approximation has a one-sided derivative at each $f \in C[a, b]$ and characterized those functions in C[a, b] at which \mathscr{P} is Gatoux differen-

0021-9045/84 \$3.00 Copyright © 1984 by Academic Press, Inc. All rights of reproduction in any form reserved. tiable. In the present paper we shall study the differentiability of the operator of best L_1 -approximation. The Gatoux differentiability of \mathscr{P} will be verified for the important class of the so-called generalized convex functions. We also give some applications for polynomials and spline functions.

2

It is well known that the space L_1 does not possess unicity subspaces. Therefore the L_1 -approximation problem will be studied in the space $X = C_1$ consisting of all real-valued continuous functions on [-1, 1] and endowed with the L_1 -norm on [-1, 1]. We consider an *n*-dimensional unicity subspace U_n in C_1 with basis $\{u_i\}_{i=1}^n$ and denote by $\mathscr{P}: C_1 \to U_n$ the operator of best L_1 -approximation. Since all known unicity subspaces of C_1 (Haar subspaces, different families of spline functions) satisfy the weak Chebyshev property it is natural to assume that U_n is also a weak Chebyshev space (for the definition see, e.g., [9]). In what follows the unicity subspaces of C_1 which are also weak Chebyshev spaces will be called *UW-spaces*. We shall also impose on the subspace U_n some nondegeneracy conditions. As usual a point $\xi \in [-1, 1]$ is called essential relative to U_n if not all elements of U_n vanish at ξ . We shall say that U_n , $n \ge 2$, is *nondegenerate* provided (a) all points in [-1, 1] are essential relative to U_n ; (b) for each $\xi \in (-1, 1)$ we can find $g \in U_n$ such that $g(\xi) = 0$ and

$$\liminf_{x \to \xi} \left| \frac{g(x)}{\xi - x} \right| > 0. \tag{1}$$

(In case the elements of U_n are differentiable (1) is equivalent to $g'(\xi) \neq 0$.)

Assume now that U_n is a *UW*-space. Then by a result of Sommer [10] (see also Micchelli [7]) there exists a unique set $\tau_1, \tau_2, ..., \tau_n$ of canonical points: $-1 = \tau_0 < \tau_1 < \cdots < \tau_n < \tau_{n+1} = 1$ such that

$$\sum_{i=0}^{n} (-1)^{i} \int_{\tau_{i}}^{\tau_{i+1}} q(x) \, dx = 0, \qquad q \in U_{n}.$$
⁽²⁾

Moreover, if $u_1, ..., u_n$ is a basis in U_n then

$$\det \begin{pmatrix} u_1, \dots, u_n \\ \tau_1, \dots, \tau_n \end{pmatrix} \neq 0,$$

that is, we may interpolate at the nodes $\tau = \{\tau_i\}_{i=1}^n$. Let us denote by \mathscr{L}_{τ} : $C_1 \to U_n$ the corresponding interpolation operator, i.e., $\mathscr{L}_{\tau}(f, \tau_i) = f(\tau_i)$, $1 \leq i \leq n, f \in C_1$. For a weak Chebyshev space U_n with basis $\{u_i\}_{i=1}^n$ denote by $K(U_n)$ its convexity cone or the cone of generalized convex functions consisting of those continuous functions f for which the determinant

det
$$\binom{u_1, ..., u_n, f}{x_1, ..., x_n, x_{n+1}}$$

preserves its sign (is nonnegative or nonpositive) for any $-1 < x_1 < \cdots < x_{n+1} < 1$. The L_1 -approximation problem for generalized convex functions was studied by Micchelli [7]. In particular it was shown in [7] that $\mathscr{P}(f) = \mathscr{L}_{\tau}(f)$ provided $f \in K(U_n)$.

In what follows Lip 1 denotes the set of point-wise Lipschitz continuous functions on (-1, 1), i.e., Lip $1 = \{f: \text{ for each } x \in (-1, 1) \text{ we can find a constant } M_x \text{ such that } |f(x) - f(y)| \leq M_x |x - y| \text{ for any } y \in (-1, 1) \}.$

Our main result is the following

THEOREM 1. Let U_n , $n \ge 2$, be a nondegenerate UW-space such that $U_n \subset \text{Lip 1}$, and consider an arbitrary $f \in K(U_n) \cap \text{Lip 1}$. If f is not identically equal to $\mathcal{L}_{\tau}(f)$ on some nondegenerate interval, then the operator \mathscr{P} of best L_1 -approximation is Gatoux differentiable at f and $D_f \mathscr{P} = \mathscr{L}_{\tau}$.

3

The proof of Theorem 1 will be based on several lemmas. We shall need the following result on zeros of elements of weak Chebyshev spaces (see [9, p. 42]).

LEMMA 1. Let U_n be an n-dimensional weak Chebyshev space and assume that all points of [-1, 1] are essential relative to U_n . Then each $g \in U_n \setminus \{0\}$ has at most n separated zeros. Moreover if either $g(1) \neq 0$ or $g(-1) \neq 0$ then the number of separated zeros of g does not exceed n - 1.

The next lemma will play a crucial part in proof of Theorem 1. It shows that under the hypothesis of Theorem 1 the operator \mathscr{P} satisfies some kind of Lip 1 property. In what follows $||g||_{\infty} = \sup_{x \in [-1,1]} |g(x)|$ and $||g||_1 = \int_{-1}^{1} |g(x)| dx$ denote the supremum and L_1 -norm of g, respectively.

LEMMA 2. Let U_n , $n \ge 2$, be a nondegenerate UW-space, $U_n \subset \text{Lip } 1$ and consider an arbitrary $f \in K(U_n) \cap \text{Lip } 1$ such that $f - \mathscr{L}_{\tau}(f)$ is not identically zero on some nondegenerate interval. Then for any bounded measurable function g and any best L_1 -approximant \tilde{g} to g from U_n we have

$$\|\mathscr{P}(f) - \widetilde{g}\|_{\infty} \leq M(f) \|f - g\|_{\infty},$$

where the constant M(f) > 0 depends only on f and U_n .

Proof of Lemma 2. Since $f \in K(U_n)$ it follows that $\mathscr{P}(f) = \mathscr{L}_{\tau}(f)$. We may assume that $\mathscr{L}_{\tau}(f) \equiv 0$, i.e.,

$$f(x) = \frac{\det \begin{pmatrix} u_1, ..., u_n, f \\ \tau_1, ..., \tau_n, x \end{pmatrix}}{\det \begin{pmatrix} u_1, ..., u_n \\ \tau_1, ..., \tau_n \end{pmatrix}},$$

where as above $\{u_i\}_{i=1}^n$ and $\{\tau_i\}_{i=1}^n$ are the basis and canonical set of U_n , respectively. Hence

$$\gamma(-1)^i f(x) \ge 0, \qquad x \in [\tau_i, \tau_{i+1}], \tag{3}$$

where $|\gamma| = 1$ and $0 \le i \le n$. Furthermore, by our assumption f does not vanish on a nondegenerate interval, i.e., all its zeros are separated. On the other hand f belongs to the (n + 1)-dimensional weak Chebyshev space spanned by $u_1, ..., u_n$ and f. Thus applying Lemma 1 we may conclude that f vanishes only at τ_i , $1 \le i \le n$. Moreover we state that for any $1 \le i \le n$,

$$\liminf_{x \to \tau_i} \left| \frac{f(x)}{x - \tau_i} \right| > 0.$$
(4)

Assume the contrary, that is, for some $1 \leq j \leq n$ and $x_k \rightarrow \tau_j$ we have

$$\lim_{x_k \to \tau_j} \frac{|f(x_k)|}{|x_k - \tau_j|} = 0.$$
 (5)

We may assume without loss of generality that $x_k \to +\tau_j$. Nondegeneracy of U_n implies that there exists $p \in U_n$, $||p||_{\infty} = 1$ such that $p(\tau_j) = 0$, and $\gamma(-1)^j p(x) \ge \eta(x - \tau_j)$ for some $\eta > 0$ and any $\tau_j \le x \le \tau_j + h$, h > 0 (see (1)). Now let ε be a positive number such that

$$\varepsilon < \min_{0 \le i \le n} \max_{x \in [\tau_i, \tau_{i+1}]} |f(x)|$$
(6)

and

$$\varepsilon < \min\{|f(-1)|, |f(1)|\},$$
(7)

and consider the function $f_1 = f - \varepsilon p$. It follows from (3) and (6) that for some $\xi_i \in (\tau_i, \tau_{i+1})$,

$$\gamma(-1)^i f(\xi_i) > \varepsilon, \qquad 0 \leq i \leq n.$$

Therefore $\gamma(-1)^i f_1(\xi_i) > \varepsilon - \varepsilon \gamma(-1)^i p(\xi_i) \ge 0$, i.e., f_1 has at $(\xi_0, \xi_{j-1}) \cup (\xi_j, \xi_n)$, n-1 separated zeros. Furthermore $f_1(\tau_j) = 0$ and by (3) and (5)

$$\begin{aligned} \gamma(-1)^{j} f_{1}(x_{k}) &= |f(x_{k})| - \varepsilon \gamma(-1)^{j} p(x_{k}) \\ &\leq (x_{k} - \tau_{j}) \left\{ \frac{|f(x_{k})|}{(x_{k} - \tau_{j})} - \varepsilon \eta \right\} < 0 \end{aligned}$$

for k large enough. Since $\gamma(-1)^j f_1(\xi_j) > 0$ and $\tau_j < x_k < \xi_j$ for k sufficiently large we may conclude that (ξ_{j-1}, ξ_j) contains 2 additional separated zeros of f_1 . Hence f_1 has at least n + 1 separated zeros. Furthermore since f_1 is an element of an (n + 1)-dimensional weak Chebyshev space it follows from Lemma 1 that $f_1(1) = f_1(-1) = 0$. But this evidently contradicts (7). By this contradiction we obtain that (4) holds for each $1 \le i \le n$.

Consider the set

$$A(t) = \{ x \in [-1, 1] : |f(x)| \leq t \}, \qquad 0 < t < \|f\|_{\infty}.$$
(8)

Since f vanishes only at τ_i , $1 \le i \le n$, and by (4) it tends to zero as $x \to \tau_i$ at most, linearly it follows that

$$\mu(A(t)) \leqslant c_1 t, \tag{9}$$

where $\mu(\dots)$ denotes the Lebesgue measure. (Here and in the remaining part of proof of Theorem 1 we denote by c_1, c_2, \dots , positive constants depending only on f and U_n .)

Now let g be a bounded measurable function, $\tilde{g} \in U_n$ any of its best L_1 -approximants in U_n . Set $||f - g||_{\infty} = \varepsilon$, $\varepsilon \ge 0$. We may assume without loss of generality that $\varepsilon < ||f||_{\infty}$ since otherwise

$$\begin{split} \|\tilde{g}\|_{1} &\leqslant \|f\|_{1} + \|f - g\|_{1} + \|g - \tilde{g}\|_{1} \\ &\leqslant \|f\|_{1} + \|f - g\|_{1} + \|g\|_{1} \leqslant 2 \|f\|_{1} + 2 \|f - g\|_{1} \\ &\leqslant 4 \|f\|_{\infty} + 4 \|f - g\|_{\infty} \leqslant 8 \|f - g\|_{\infty}, \end{split}$$

and the statement of Lemma 2 follows by equivalence of norms in finitedimensional spaces. For $\varepsilon < ||f||_{\infty}$ we consider the function

$$f_{\varepsilon}(x) = f(x), \qquad x \in A(\varepsilon),$$

= $g(x), \qquad x \in [-1, 1] \setminus A(\varepsilon).$ (10)

Using that $||f - g||_{\infty} = \varepsilon$ we obtain by (3) that

$$\operatorname{sign} f_{\varepsilon}(x) = \operatorname{sign} f(x) = \gamma(-1)^{i}, \qquad x \in (\tau_{i}, \tau_{i+1}), \quad 0 \leq i \leq n.$$

Hence (2) yields that

$$\|f_{\varepsilon} - \tilde{g}\|_{1} - \|f_{\varepsilon}\|_{1} = \int_{-1}^{1} (f_{\varepsilon} - \tilde{g}) \{\operatorname{sign}(f_{\varepsilon} - \tilde{g}) - \operatorname{sign} f_{\varepsilon} \}$$
$$= 2 \int_{B(f_{\varepsilon}, \tilde{g})} |f_{\varepsilon} - \tilde{g}|, \qquad (11)$$

where $B(f_{\varepsilon}, \tilde{g}) = \{x \in [-1, 1] : 0 < f_{\varepsilon}(x) < \tilde{g}(x) \text{ or } \tilde{g}(x) < f_{\varepsilon}(x) < 0\}.$

Let us prove that for any $x \in [-1, 1]$ and $1 \le i \le n$ we have with a suitable $c_2 > 0$,

$$|f_{\varepsilon}(x)| \leq c_2 |x - \tau_i|. \tag{12}$$

If $x \in A(\varepsilon)$ then $f_{\varepsilon}(x) = f(x)$ and (12) follows by $f(\tau_i) = 0$ and the Lip 1 property of f at τ_i . On the other hand, $\varepsilon \leq |f(x)| \leq c_3 |x - \tau_i|$ when $x \in [-1, 1] \setminus A(\varepsilon)$. Hence by (10),

$$|f_{\varepsilon}(x)| = |g(x)| \leq |f(x)| + \varepsilon \leq 2c_3 |x - \tau_i|,$$

i.e., (12) holds for every $x \in [-1, 1]$.

Furthermore, since $U_n \subset \text{Lip } 1$, it easily follows that for any $p \in U_n$ and $1 \leq i \leq n$,

$$|p(x) - p(\tau_i)| \le c_4 ||p||_{\infty} |x - \tau_i|.$$
(13)

Moreover, using that $\{\tau_i\}_{i=1}^n$ is an interpolation set for U_n , we may conclude that

$$\|p\|_{\infty} \leqslant c_5 \max_{1\leqslant i\leqslant n} |p(\tau_i)|, \qquad p \in U_n.$$
⁽¹⁴⁾

Applying (13) and (14) for $\tilde{g} \in U_n$ we obtain that for some $1 \leq j \leq n$ and any $x \in [-1/2c_4c_5 + \tau_j, \tau_j + 1/2c_4c_5]$,

$$|\tilde{g}(x)| \ge |\tilde{g}(\tau_{j})| - |\tilde{g}(x) - \tilde{g}(\tau_{j})| \ge \frac{\|\tilde{g}\|_{\infty}}{c_{5}} - c_{4} \|\tilde{g}\|_{\infty} |x - \tau_{j}|$$

$$\ge \frac{\|\tilde{g}\|_{\infty}}{c_{5}} - \frac{\|\tilde{g}\|_{\infty}}{2c_{5}} = \frac{\|\tilde{g}\|_{\infty}}{2c_{5}}.$$
(15)

We may assume without loss of generality that $f_{\varepsilon} > 0$ on (τ_j, τ_{j+1}) and $\tilde{g} > 0$ on $[-1/2c_4c_5 + \tau_j, \tau_j + 1/2c_4c_5]$. Set $\tau_j^* = \min\{\tau_{j+1}, \tau_j + \|\tilde{g}\|_{\infty}/4c_2c_5\}$. Then (12) implies that for $x \in (\tau_j, \tau_j^*)$,

$$0 < f_{\epsilon}(x) \leq \frac{\|\tilde{g}\|_{\infty}}{4c_{5}}.$$
 (16)

Hence by (15), $(\tau_j, \tau_j^*) \subset B(f_{\varepsilon}, \tilde{g})$. Thus it follows from (11), (15), and (16),

$$\|f_{\varepsilon} - \tilde{g}\|_{1} - \|f_{\varepsilon}\|_{1} \ge \int_{\tau_{j}}^{\tau_{j}^{*}} |f_{\varepsilon} - \tilde{g}| \ge (\tau_{j}^{*} - \tau_{j}) \frac{\|\tilde{g}\|_{\infty}}{4c_{5}}$$
$$\ge c_{6} \min\{\|\tilde{g}\|_{\infty}, \|\tilde{g}\|_{\infty}^{2}\}.$$
(17)

On the other hand, using that \tilde{g} is a best L_1 -approximant of g, we can obtain the following upper estimate

$$\begin{split} \|f_{\varepsilon} - \tilde{g}\|_{1} - \|f_{\varepsilon}\|_{1} &\leq \|f_{\varepsilon} - g\|_{1} + \|g - \tilde{g}\|_{1} - \|f_{\varepsilon}\|_{1} \\ &\leq \|f_{\varepsilon} - g\|_{1} + \|g\|_{1} - \|f_{\varepsilon}\|_{1} \leq 2 \|f_{\varepsilon} - g\|_{1}. \end{split}$$

Hence (10) and (9) yield

$$\|f_{\varepsilon} - \tilde{g}\|_{1} - \|f_{\varepsilon}\|_{1} \leq 2 \|f_{\varepsilon} - g\|_{1} = 2 \int_{A(\varepsilon)} |f - g| \leq 2\varepsilon \mu(A(\varepsilon)) \leq 2c_{1}\varepsilon^{2}.$$

Combining this with (17) and taking into account that $\varepsilon < \|f\|_{\infty}$, we finally obtain

$$\|\tilde{g}\|_{\infty} \leqslant c_{7}\varepsilon = c_{7}\|f-g\|_{\infty}.$$

The proof of the lemma is completed.

Remark 1. The main point in Lemma 2 is that we estimate the distance between best L_1 -approximants of functions f and g while the deviation of g from f is measured in supremum norm. This leads to a Lip 1 type property. On the other hand, if the distance between g and f is measured in L_1 -norm, then the operator \mathscr{S} satisfies only the Lip $\frac{1}{2}$ condition, the proof being similar to [6, p. 341].

For functions $f \in K(U_n)$ we have the nice relation $\mathscr{P}(f) = \mathscr{L}_{\tau}(f)$. Our following lemma shows that this relation almost holds for nearby functions. By $\omega(g, h) = \max\{|g(x_1) - g(x_2)|: x_1, x_2 \in [-1, 1], |x_1 - x_2| \leq h\}$ we denote the modulus of continuity of a continuous function g.

LEMMA 3. Let U_n , $n \ge 2$, be a nondegenerate UW-space, $U_n \subset \text{Lip } 1$ and consider an arbitrary $f \in K(U_n) \cap \text{Lip } 1$ such that $f - \mathscr{L}_r(f)$ is not identically zero on a nondegenerate interval. Then for any continuous function g with $\|g\|_{\infty} = 1$ and $0 < t < t_0(f)$ we have

$$\|\mathscr{P}(f+tg) - \mathscr{L}_{\tau}(f+tg)\|_{\infty} \leq M_{1}(f) t\omega(g - \mathscr{L}_{\tau}(g), t),$$

where $t_0(f)$ and $M_1(f)$ are positive constants independent of g.

Proof of Lemma 3. Set $f^* = f - \mathscr{L}_{\tau}(f)$, $g^* = g - \mathscr{L}_{\tau}(g)$. Evidently $\mathscr{P}(f^*) \equiv 0$. Hence by Lemma 2,

$$\|\mathscr{P}(f^* + tg^*)\|_{\infty} \leq M(f)t \|g^*\|_{\infty}.$$
(18)

For $\varepsilon_t = (M(f) + 1) ||g^*||_{\infty} t$ we consider the function

$$f_t(x) = f^*(x) + tg^*(x), \qquad x \in A(\varepsilon_t),$$

= $f^*(x), \qquad x \in [-1, 1] \setminus A(\varepsilon_t),$ (19)

where $A(h) = \{x \in [-1, 1] : |f^*(x)| \le h\}.$

Let us verify that for any $x \in [-1, 1]$,

$$sign(f_t - \mathscr{P}(f^* + tg^*)) = sign(f^* + tg^* - \mathscr{P}(f^* + tg^*)).$$
(20)

For $x \in A(\varepsilon_t)$ this holds automatically. Furthermore, if $x \in [-1, 1] \setminus A(\varepsilon_t)$, then $f_t = f^*$ and by (18),

$$|tg^* - \mathscr{P}(f^* + tg^*)| \leq \varepsilon_t < |f^*|.$$

Hence (20) is true for any $x \in [-1, 1]$.

It is known (see [8, p. 46]) that since $\mathscr{P}(f^* + tg^*)$ is the best L_1 -approximant of $f^* + tg^*$ we have

$$\left|\int_{-1}^{1} p \operatorname{sign}(f^* + tg^* - \mathscr{P}(f^* + tg^*))\right| \leq \int_{Z} |p|, \quad p \in U_n,$$

where $Z = \{x \in [-1, 1]: f^*(x) + tg^*(x) = \mathscr{P}(f^* + tg^*, x)\}, \quad Z \subseteq A(\varepsilon_t).$ Hence by (20), for any $p \in U_n$,

$$\begin{split} \|f_t - \mathscr{P}(f^* + tg^*)\|_1 \\ &= \int_{-1}^1 \left(f_t - \mathscr{P}(f^* + tg^*) \operatorname{sign}(f^* + tg^* - \mathscr{P}(f^* + tg^*)) \right) \\ &\leqslant \int_{[-1,1]\setminus \mathbb{Z}} |f_t - p| \\ &+ \left| \int_{-1}^1 \left(p - \mathscr{P}(f^* + tg^*) \right) \operatorname{sign}(f^* + tg^* - \mathscr{P}(f^* + tg^*)) \right| \\ &\leqslant \int_{[-1,1]\setminus \mathbb{Z}} |f_t - p| + \int_{\mathbb{Z}} |p - \mathscr{P}(f^* + tg^*)| = \|f_t - p\|_1, \end{split}$$

i.e., $\mathscr{P}(f^* + tg^*)$ is a best L_1 -approximant of f_t in U_n . Then again applying Lemma 2 for functions f and $f_t + \mathscr{L}_r(f)$ we obtain by (19),

$$\|\mathscr{P}(f^* + tg^*)\|_{\infty} \leq M(f) \|f^* - f_t\|_{\infty} \leq M(f)t \max_{x \in \mathcal{A}(\varepsilon_t)} |g^*(x)|.$$
(21)

Using once more relations (4) (with $f = f^*$), we may conclude that for any $0 < t < t_1$,

$$A(t) \subset \bigcup_{i=1}^{n} (-bt + \tau_i, \tau_i + bt),$$
(22)

where t_1 and b > 0 depend only on f. Furthermore, since \mathscr{L}_{τ} is a bounded linear operator

$$\|g^*\|_{\infty} \leq 1 + \|L_{\tau}(g)\|_{\infty} \leq R, \tag{23}$$

the upper bound being independent of g. Hence by (22), for any $0 < t < t_0 = t_1/R(M(f) + 1)$,

$$A(\varepsilon_t) \subset \bigcup_{i=1}^n (-b\varepsilon_t + \tau_i, \tau_i + b\varepsilon_t).$$
(24)

Moreover $g^*(\tau_i) = 0$, $1 \le i \le n$. Thus (24) and (23) imply that

$$\max_{x \in \mathcal{A}(\varepsilon_{t})} |g^{*}(x)| \leq \omega(g^{*}, b\varepsilon_{t})$$
$$\leq ((M(f) + 1) Rb + 1) \omega(g - \mathscr{L}_{\tau}(g), t).$$

Substituting this into (21) we obtain the estimation of Lemma 3.

Evidently Theorem 1 is a straightforward consequence of Lemma 3. In case n = 1 we can prove a slightly more general result than Theorem 1. We set $U_1 = \{c\phi: c \in \mathbb{R}\}$, where ϕ is a positive continuous function, $\phi(x) \ge \phi_0 > 0$, $x \in [-1, 1]$. Then $K(U_1)$ contains those continuous functions f for which f/ϕ is monotone. By the Jackson-Krein theorem (see [8, p. 236]) U_1 is a unicity subspace of C_1 . The canonical set of U_1 consists of one point $-1 < \tau_1 < 1$ such that

$$\int_{-1}^{\tau_1} \phi - \int_{\tau_1}^{1} \phi = 0.$$
 (25)

THEOREM 2. Let $U_1 = \{c\phi: c \in \mathbb{R}\}$, where ϕ is continuous and positive and consider a continuous function f such that f/ϕ is monotone and f is not identically equal to $\mathscr{L}_{\tau}(f)$ on some nondegenerate interval. Then operator \mathscr{P} of best L_1 -approximation is Gatoux differentiable at f and $D_f \mathscr{P} = \mathscr{L}_{\tau}$.

Proof of Theorem 2. Consider an arbitrary continuous function g with $||g||_{\infty} = 1$. Without loss of generality we may assume that $f(\tau_1) = g(\tau_1) = 0$, i.e., $\mathscr{L}_{\tau}(f) = \mathscr{L}_{\tau}(g) \equiv 0$. Then in order to prove the theorem we have to show that $\mathscr{P}(f + tg)/t \to 0$ as $t \to 0$. Since f/ϕ is monotone and f does not vanish on a nondegenerate interval it follows that τ_1 is the only zero of f/ϕ and

$$A^{*}(t) = \left\{ x \in [-1, 1] : \left| \frac{f(x)}{\phi(x)} \right| \leq \frac{|t|}{\phi_{0}} \right\} = [\tau_{1} - h_{1}(t), \tau_{1} + h_{2}(t)],$$

274

where $h(t) = \max\{h_1(t), h_2(t)\} \to +0$ as $t \to 0$. Set $\mathscr{P}(f + tg) = c_t \phi$, $\eta(t) = \omega(g, h(t))$. We claim that for any t,

$$|c_t| \leqslant \frac{|t|}{\phi_0} \eta(t) \tag{26}$$

which immediately implies that $\mathscr{P}(f + tg)/t \to 0$ $(t \to 0)$. Assume that (26) is not true, i.e.,

$$\gamma c_t > \frac{|t|}{\phi_0} \eta(t) \qquad (|\gamma| = 1).$$
(27)

Of course we may assume that yf < 0 on $(\tau_1, 1]$ (since τ_1 is the only zero of f and f changes its sign at τ_1). Let us verify that

$$\gamma(f + tg - c_t \phi) < 0 \tag{28}$$

on $[\tau_1, 1]$. If $\gamma(f(x) + tg(x)) \le 0$ then by (27),

$$\gamma(f(x) + tg(x) - c_t\phi(x)) \leqslant -\gamma c_t\phi(x) < -|t| \eta(t) \leqslant 0.$$

On the other hand, if $x \in [\tau_1, 1]$ and $\gamma(f(x) + tg(x)) > 0$ then $0 \ge \gamma f(x) > -\gamma tg(x) \ge -|t|$, i.e., $x \in A^*(t)$. Hence using that $g(\tau_1) = 0$ we obtain by (27),

$$\gamma(f(x) + tg(x) - c_t\phi(x)) \leq t\gamma g(x) - \gamma c_t\phi(x)$$

$$< -|t| \eta(t) + |t| \omega(g, h(t)) = 0.$$

Thus (28) holds on $[\tau_1, 1]$. This means that it holds also on $[\tau_1 - \delta, 1]$ and with $\tilde{c}_t = c_t - \gamma \varepsilon$ for some $\varepsilon, \delta > 0$. Hence by (25),

$$\|f + tg - \tilde{c}_t \phi\|_1 - \|f + tg - c_t \phi\|_1 \leq \varepsilon \int_{-1}^{\tau_1 - \delta} \phi - \varepsilon \int_{\tau_1 - \delta}^{1} \phi$$
$$= -2\varepsilon \int_{\tau_1 - \delta}^{\tau_1} \phi < 0$$

which is an evident contradiction since $c_t \phi$ is the best L_1 -approximation to f + tg from U_1 . The theorem is proved.

Remark 2. Let us show that if we drop in the above theorem the condition that f is not identically equal to $\mathcal{L}_r(f)$ on a nondegenerate interval then differentiability may fail. Consider the case when U_1 is the space of constants and set

$$f(x) = x, \qquad x \in [0, 1],$$

= 0, $x \in [-1, 0], \quad g(x) = f(-x).$

275

ANDRÁS KROÓ

Then obviously $f \in K(U_1)$. Furthermore $\mathscr{P}(f) = 0$, $\mathscr{P}(f + tg) = t/(t + 1)$ if t > 0 and $\mathscr{P}(f + tg) = 0$ if t < 0. Thus the right and left derivative of \mathscr{P} at f in direction g is equal to 1 and 0, respectively. Hence \mathscr{P} is not differentiable at f. The same remark holds in connection with Theorem 1.

Remark 3. A higher type of differentiability which can be imposed on operator \mathscr{P} is the Fréchet derivative. It was shown in [3] that the operator of best Chebyshev approximation is not Fréchet differentiable. It can be also shown that under the hypothesis of Theorem 1 (or Theorem 2) the operator \mathscr{P} of best L_1 -approximation is not Fréchet differentiable.

4

Let us consider some applications of the theorems proved above. Assume that U_n is an *n*-dimensional ECT-space (see [9, p. 364], for the definition). By the Jackson-Krein theorem U_n is a unicity subspace of C_1 and hence it is evidently a UW-space. If $n \ge 2$, then by the definition of ECT-spaces U_n satisfies the smoothness and nondegeneracy conditions imposed in Theorem 1. Moreover it is known (see [2, p. 380]) that $K(U_n) \subset \text{Lip 1}$ if $n \ge 2$. On the other hand, a one-dimensional ECT-space is simply a linear span of a positive continuous function. Thus using Theorems 1 and 2 we obtain

COROLLARY 1. Let U_n , $n \ge 1$, be an ECT-space. Then for any $f \in K(U_n)$ such that $f - \mathscr{L}_{\tau}(f)$ is not identically zero on a nondegenerate interval the operator \mathscr{P} of best L_1 -approximation is Gatoux differentiable at f and $D_f \mathscr{P} = \mathscr{L}_{\tau}$.

A standard example of an ECT-space is the set P_n of algebraic polynomials of degree at most n-1. In the polynomial case the canonical points are the zeros of the Chebyshev polynomial of degree n of second kind. The cone $K(P_n)$ of generalized convex functions contains continuous functions f whose nth order divided difference

$$d_n(f, x_1, ..., x_{n+1}) = \sum_{i=1}^{n+1} \frac{f(x_i)}{\omega'(x_i)} \qquad \left(\omega(x) = \prod_{i=1}^{n+1} (x - x_i)\right)$$

does not change sign while $-1 < x_1 < \cdots < x_{n+1} < 1$. If in particular $f \in C^n$, $f^{(n)}$ does not change sign at (-1, 1) and is not identically zero at some nondegenerate interval then Corollary 1 implies that \mathscr{P} is Gatoux differentiable at f.

We turn now to application for spline functions. Let $U_n = S_{m,r}$ be the space of splines of degree m-1 with r fixed knots $-1 < \tilde{x}_1 < \cdots < \tilde{x}_r < 1$,

dim $S_{m,r} = m + r = n$ ($m \ge 2$, $r \ge 1$). It is well known that $S_{m,r}$ is a weak Chebyshev space [9]. Moreover, by a result of Galkin [1] and Strauss [11] $S_{m,r}$ is also a unicity subspace of C_1 . Hence $S_{m,r}$ is a *UW*-space. Evidently, $S_{m,r}$ fulfils the smoothness and nondegeneracy conditions of Theorem 1. The canonical set of $S_{m,r}$ is given by zeros of a certain perfect spline, see [7].

COROLLARY 2. Let $U_n = S_{m,r}$ $(m \ge 2, r \ge 1)$. Then for any $f \in K(S_{m,r}) \cap \text{Lip } 1$ such that $f - \mathcal{L}_{\tau}(f)$ is not identically zero on a nondegenerate interval, the operator \mathscr{P} of best L_1 -approximation is Gatoux differentiable at f and $D_f \mathscr{P} = \mathcal{L}_{\tau}$.

Corollary 2 holds in particular for functions $f \in C^m$ such that $f^{(m)}$ changes its sign only at $\tilde{x}_1, ..., \tilde{x}_r$ and does not vanish on a nondegenerate interval (see [7, p. 8]).

References

- 1. P. V. GALKIN, The uniqueness of the element of best mean approximation to a continuous function using splines with fixed nodes, *Math. Notes* 15 (1974), 3–8.
- S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
- 3. A. V. KOLUSOV, On differentiability of best approximation operator, *Math. Notes* 29 (1981), 577–596.
- B. KRIPKE AND R. HOLMES, Smoothness of approximation, Michigan Math. J. 15 (1968), 225-248.
- A. KROÓ, Differential properties of the operator of best approximation, Acta Math. Acad. Sci. Hungar. 30 (1977), 319–331.
- A. KROÓ, On the continuity of best approximations in the space of integrable functions, Acta Math. Acad. Sci. Hungar. 32 (1978), 331-348.
- C. A. MICCHELLI, Best L¹-approximation by weak Chebyshev systems and the uniqueness of interpolating perfect splines, J. Approx. Theory 19 (1977), 1-14.
- I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin/New York, 1970.
- 9. L. SCHUMAKER, "Spline Functions: Basic Theory," Wiley-Interscience, New York, 1981.
- M. SOMMER, L₁-approximation by weak Chebyshev spaces, in "Approximation in Theorie und Praxis" (G. Meinardus, Ed.), pp. 85–102, Bibliographisches Institut, Mannheim, 1979.
- H. STRAUSS, L₁-Approximation mit Splinefunktionen, in "Numerische Methoden der Approximationstheorie" (L. Collatz, Ed.), Vol. 2, pp. 151–162, Birkhäuser, Basel, 1975.